IV.17 Indicators

You will be able to:

- Describe an indicator as a mixture of a weak acid and its conjugate base, each with distinguishing colours
- Describe the term transition point of an indicator, including the conditions that exist in an equilibrium system
- Describe the shift in equilibrium and resulting colour changes as an acid or base is added to an indicator
- Predict the approximate pH at the transition point using the Ka value of an indicator
- Predict the approximate Ka value for an indicator given the approximate pH range of the colour change

We have used indicators in many labs to identify acidic or basic solutions, or even to signify the equivalence point of a titration.

So, what is an indicator anyway?

50, what is an indicator anyway:			
DEFINE:	An INDICATOR is		
	 HIn is the		
Ex: An ii	ndicator HInd has a yellow acid form (<mark>HIn</mark>) and a	a red base form (In ⁻).	
	cess H ₃ O ⁺ is added, equilibrium shifts	; Favours	
	[HIn] > [In ⁻] Colour will be		
Therefore, _			
	cess OH is added, equilibrium shifts [HIn] < [In] Colour will be		
Therefore, _			
• If ac	cid/base solution has [HIn] = [In ⁻] Colour will be		
Therefore, _			

Using the A-B Indicator chart in Data Book:

ACID-BASE INDICATORS			
Indicator	pH Range in Which Colour Change Occurs	Colour Change as pH Increases	
Methyl violet	0.0 - 1.6	yellow to blue	
Thymol blue	1.2 - 2.8	red to yellow	
Orange IV	1.4 - 2.8	red to yellow	
Methyl orange	3.2 - 4.4	red to yellow	
Bromcresol green	3.8 - 5.4	yellow to blue	

Example 30: When a drop of 0.1M HCl is added to the indicator bromcresol green, the colour is yellow. When a drop of 0.10M NaOH is added to the indicator, the colour is blue.

- What colour is the base form of bromcresol green (In⁻)?
- What would the colour be if [HIn] = [In⁻] for bromcresol green?

DEFINE:	The TRANSITION POINT is

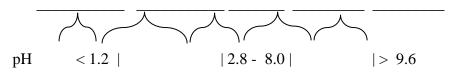
AT TRANSITION POINT (or END POINT):

[HIn] = [In ⁻]	
Colour is 50/50 mix of acid/base colours.	
$\mathbf{K_{a\ (indicator)}} = [$	$ \begin{array}{c} \underline{\textit{Reasoning:}} \\ K_a = \boxed{} \boxed{} = \boxed{} \end{array} $
pKa = pH	Reasoning: pKa = So, Then,

Finding the transition point and $K_{\underline{a}}$ of an Indicator

Example 31: Find the K_a of Alizarin Yellow

Step 1: Look on the Indicator table. Find the midpoint of the pH range.	
Step 2: Remember at transition point, $pKa = pH$. Solve for K_a .	


Thymol Blue (a diprotic indicator)

You'll notice that Thymol Blue appears twice on the Indicator Table:

Indicator	pH Range in Which Colour Change Occurs	Colour Change as pH Increases	First ionization
Thymol blue	1.2 - 2.8	red to yellow	That follization
Thymol blue	8.0 - 9.6	yellow to blue	Second

pН	Form(s) which predominate(s) (H ₂ Tb, HTb ⁻ or Tb ²⁻)	Approximate Colour
1.0		
2.0	& are equal	
3.0		
7.0		
8.8	& are equal	
10.0		

Colours of Thymol Blue:

Example 32: What is the colour of indigo carmine indicator in 0.01 M Ca(OH)₂?

Step 1: Look on the Indicator table. Find the midpoint of the pH range.	
Step 2: Determine [OH-] in solution, convert to [H ₃ O ⁺] to calculate pH	
Step 3: Locate pH of solution on pH range of indicator to determine colour	

Example 33: Indicator X (K_a = 1.7 x 10^{-4}) is orange in acid and green in base form. What colour is it in 0.0001 M HCl?

Step 1: Calculate transition point pH from Ka	
Step 2: Determine [H ₃ O ⁺] in solution, convert to to calculate pH	

Step 3: Locate pH of solution or	n
pH range of indicator to	
determine colour	

Mixtures of Indicators

UNIVERSAL indicator is a mixture of	 ,
and	

• It gives a spectrum of colours (ROY G BIV) that represent the range of pH values.

Indicator	рН 0-3.8	pH 3.8-6.8	pH 6.8-9.1	pH 9.1-14
Methyl orange pKa =				
Bromothymol blue pKa =				
Phenolphthalein pKa =				
Combined colour				

Therefore, the pH guide for **UNIVERSAL indicator** is as follows:

pН	colour
3	
4	
5	
6	
7	
8	
9	
10	

Do Hebden set 30 p. 162 #109, 112, 116, 120 "INDICATOR PRACTICE" Worksheet