Review: Acid-Base Chemistry

"Basics"

- General properties of acids & bases
- Balance neutralization equations

- SA + SB \rightarrow water + salt

- Arrhenius vs. Bronsted-Lowry
 - BL plays "doubles tennis match" with H+)
 - Identify strong vs. weak

Conjugate A-B

- Identify conjugate acid-base pairs
 - HCI (SA), CI- (conj B, but does not act as base)
 - F- (WB), HF (conj A, weak acid)

 $H_2PO_4 + CN^- \leftrightarrow HCN + HPO_4^ A \quad B \quad CA \quad CB$

Strong acids & bases

- Ionize completely (100%) (\rightarrow)
- <u>Strong acids</u>
 - Top 6 on **L-hand** side of BL table
 - Conjugate bases are SPECTATOR ions (have no effect on acid-base reactions)
- <u>Strong bases</u>
 - Bottom 2 (O²⁻ & NH₂⁻) on **R-hand** side of BL table
 - Metal hydroxide salts (NaOH, KOH, Ca(OH)₂)

Conjugate acids never act as acids

BL relative strengths

• <u>ACIDS</u>

- Weaker as you go DOWN L-hand side
- Higher $K_a = stronger$ acid (more ionization, so more H_3O^+ produced)
- Lower $K_a = weaker$ acid (less ionization, so less H_3O^+ produced)
- <u>BASES</u>
 - Weaker as you go UP the R-hand side
 - Higher K_b = stronger base (lower K_a of conj
 A)
 - Lower $K_b = weaker$ base (higher K_a of conj A)

Amphiprotic Substances

- Can act as either ACID or BASE
 - H_2O and substances with extra H+ to donate and negative charge $H_2O \longrightarrow H^{\dagger} + OH^{-}$ $H_2O + H^{\dagger} \longrightarrow H_3O^{\dagger}$
- H₂O+H⁺ → H₃O⁺
 Find amphi-acid on left, look up K_a
- Find amphi-base on right, $K_b = K_w/K_a$ (conj a)
 - Ka > Kb, then acts as ACID
 - Ka < Kb, then acts as a BASE

A-B Equilibria

 Predict whether REACTANTS or PRODUCTS are favoured in A-B equilibrium

"Strong PUSH the weak"

• Identify which side has the SA & SB (same side), then the other side is favoured

$K_{w}, K_{a}, and K_{b}$

- Ionization constants (only affected by temperature)
- Kw = $[H_3O^+][OH^-] = 1.00 \times 10^{-14} (@ 25^{\circ}C)$

- As temp \uparrow , Kw \uparrow (more collisions)

• Ka = [<u>CB-][H₃O⁺]</u>

[A]

- Kb = [<u>CA][OH-]</u> = <u>Kw</u>
 - [B] Ka (conj acid)
- Kw = Ka x Kb (for conjugate pairs)

opyright Nick Kim ttp://strangematter.sci.waikato.ac.nz/

Using "the SQUARE"

Weak acid/base Equilibria

 Weak acids and bases don't ionize completely

- On average, ionize only 5%

	HA +	H ₂ O <>	H ₃ O⁺ +	CB ⁻
Initial				
Change				
Equil				

Assume change from initial concentration is negligible

"Assume 1.0 – x = 1.0"; prove < 5% dissociation

Weak acid/base Equilibria

- Be able to calculate:
 - Ka or Kb (no assumption necessary)
 - Use assumption to avoid quadratic:
 - $[H_3O^+]$ and [CB-] (use Ka), OR
 - [OH⁻] and [CA-] (use Kb)
 - Initial concentration of WA or WB

step two."

Hydrolysis

- Write dissociation of salts (put into ions)
- Hydrolysis: reaction of ion with water to produce acidic or basic solution
 - Spectator ions: **Don't participate**
 - Groups I and II on periodic table;
 - Conjugate bases of top 5 strong acids (R-hand side)

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive ...?"

Hydrolysis

- Predict if hydrolysis produces an acidic, basic, or neutral solution
 - Cation⁺ + $H_2O \leftrightarrow H_3O^+$ + CB-
 - Anion⁻ + $H_2O \leftrightarrow OH^-$ + CA
- Spectator ions produce neutral solutions
- If both ions undergo hydrolysis, compare Ka and Kb values (greater value wins out)
 - If Ka = Kb, then prediction would be neutral solution
- For amphiprotic ions, determine if Ka > Kb (acidic) or Ka < Kb (basic)

Indicators

 Mixture of weak acid and conjugate base, each with distinguishing colours

 $Hln + H_2O \leftrightarrow In^- + H_3O^+$

Transition point: [HIn] = [In-]

- Colour change occurs
- Shift in equilibrium (Le Chatelier)
 - Add H_3O^+ , shift LEFT to **HIn**
 - Add OH⁻, shift RIGHT to **In**⁻

Indicators

- Calculate transition point pH (mid-point of range)
- Calculate Ka of indicator

– pH (@ тр) = pKa

 Suggest appropriate indicator for experiments

Acid-Base Titrations

- **Standard** solution in buret (known conc & vol)
- **Sample** solution in flask (+ indicator) (known vol, unknown conc)
- Equivalence point moles acid = moles base; rapidly rising/falling pH
 - Choose indicator that has transition point (colour change) near equivalence point
- pH ½ = pH at which half of volume of standard solution added

- **pH** $\frac{1}{2}$ = pKa of acid

Titration curves

- Review titration curves
- Note initial rise/fall of pH in weak acid/weak base titrations (prior to equivalence point)

STANDARD SOL'N	SAMPLE SOL'N	EQUIVALENCE POINT	INDICATOR
Strong Acid	Strong Base	pH = 7.0	Bromothymol blue, phenol red, neutral red
Strong Base	Strong Acid	pH = 7.0	
Strong Acid	Weak Base	pH < 7.0	Bromocresol green, methyl orange/red
Strong Base	Weak Acid	pH > 7.0	Phenolphthalein

Buffers

- Buffers absorb addition of small amounts of acid or base without a big change in pH
- Mixture of weak acid and conjugate base in equilibrium
 - Acidic buffers have low pH
 - Basic buffers have high pH
- Outline procedure to prepare a buffer solution
 - Add sufficient conjugate base/acid as a soluble salt

Buffers

- Describe equilibrium shifts as H₃O⁺ or OH⁻ is added to buffer system
 - Draw equilibrium stress graph
 - Describe shift in equilibrium and net effect
- Biological buffers:
 - CO₂/HCO³⁻ in blood plasma
 - H_2PO^{4-}/HPO_4^{2-} in cell cytoplasm

Acid Rain

- Metal oxides form basic solutions
- Non-metal oxides form acidic solutions
- Acid rain due to excess NO_x and SO_x in atmosphere
 - SO₂ + H₂O --> H₂SO₃
 - SO₃ + H₂O --> H₂SO₄
 - $2NO_2 + H_2O --> HNO_2 + HNO_3$

Singing in the Acid Rain.

