Review: Acid-Base Chemistry

"Basics"

- General properties of acids \& bases
- Balance neutralization equations
- SA + SB \rightarrow water + salt
- Arrhenius vs. Bronsted-Lowry
- BL plays "doubles tennis match" with $\mathrm{H}+$)
- Identify strong vs. weak

Conjugate A-B

- Identify conjugate acid-base pairs
- $\mathrm{HCl}(\mathrm{SA}), \mathrm{Cl}$ - (conj B , but does not act as base)
- F- (WB), HF (conj A, weak acid)

$$
\begin{array}{ccc}
\mathrm{H}_{2} \mathrm{PO}_{4}+\mathrm{CN}^{-} \leftrightarrow & \mathrm{HCN}+\mathrm{HPO}_{4}^{-} \\
A \quad B \quad C A \quad C B
\end{array}
$$

Strong acids \& bases

- Ionize completely (100\%) (\rightarrow)
- Strong acids
- Top 6 on L-hand side of BL table
- Conjugate bases are SPECTATOR ions (have no effect on acid-base reactions)
- Strong bases
- Bottom $2\left(\mathrm{O}^{2-} \& \mathrm{NH}_{2}^{-}\right)$on R-hand side of BL table
- Metal hydroxide salts $\left(\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}\right)$

Conjugate acids never_act as acids

$B L$ relative strengths

- ACIDS
- Weaker as you go DOWN L-hand side
- Higher $\mathrm{K}_{\mathrm{a}}=$ stronger acid (more ionization, so more $\mathrm{H}_{3} \mathrm{O}^{+}$produced)
- Lower K_{a} = weaker acid (less ionization, so less $\mathrm{H}_{3} \mathrm{O}^{+}$produced)
- BASES
- Weaker as you go UP the R-hand side
- Higher K_{b} = stronger base (lower K_{a} of conj
 A)
- Lower K_{b} = weaker base (higher K_{a} of conj A)

Amphiprotic Substances

- Can act as either ACID or BASE
- $\mathrm{H}_{2} \mathrm{O}$ and substances with extra $\mathrm{H}+$ to donate and negative charge

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \longrightarrow \mathrm{H}^{+}
\end{aligned}
$$

- Find amphi-acid on left, look up K_{a}
- Find amphi-base on right, $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}$ (conj a$)$
- $K a>K b$, then acts as ACID
- $K a<K b$, then acts as a BASE

A-B Equilibria

- Predict whether REACTANTS or PRODUCTS are favoured in A-B equilibrium
- "Strong PUSH the weak"
- Identify which side has the SA \& SB (same side), then the other side is favoured

K_{w}, K_{a}, and K_{b}

- Ionization constants (only affected by temperature)
- $\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}\left(@ 25^{\circ} \mathrm{C}\right)$
- As temp $\uparrow, \mathrm{Kw} \uparrow$ (more collisions)
- $\mathrm{Ka}=[\mathrm{CB}-]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
[A]
- $\mathrm{Kb}=[\mathrm{CA}][\mathrm{OH}-]=\underline{\mathrm{Kw}}$
[B] Ka (conj acid)
- $\mathrm{Kw}=\mathrm{Ka} \times \mathrm{Kb}$ (for conjugate pairs)

Solution Concentrations

- Neutral: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OH}-]$
- $\mathrm{pH}=7.0, \mathrm{pOH}=7.0$
- Acidic: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
$-\mathrm{pH}<7.0, \mathrm{pOH}>7.0$
- Basic: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
- $\mathrm{pH}>7.0, \mathrm{pOH}<7.0$

DESPITE THE HEAVY RAK, MCAUSIER'S AUM WAS TRUE, AND HIS CAREFULLY MEASURED ALLQUOT OF HYDROCHLORIC ACID FOUND ITS MARK DEEP IN THE ENEMY'S RESER/OIR OF SCDIUM HYDROXIDE

Using "the SQUARE"

Remember: pH and pOH sig figs are based on numbers AFTER decimal point!

Weak acid/base Equilibria

- Weak acids and bases don't ionize completely
- On average, ionize only 5\%

	$\mathrm{HA}+$	$\mathrm{H}_{2} \mathrm{O}<-->$	$\mathrm{H}_{3} \mathrm{O}^{+}+$	CB
Initial				
Change				
Equil				

- Assume change from initial concentration is negligible
- "Assume $1.0-x=1.0$ "; prove $<5 \%$ dissociation

Weak acid/base Equilibria

- Be able to calculate:
- Ka or Kb (no assumption necessary)
- Use assumption to avoid quadratic:
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and [CB-] (use Ka), OR
- [OH^{-}] and [CA-] (use Kb)
- Initial concentration of WA or WB

Show your work!

"I think you should be more explicit here in step two."

Hydrolysis

- Write dissociation of salts (put into ions)
- Hydrolysis: reaction of ion with water to produce acidic or basic solution
- Spectator ions: Don't participate
- Groups I and II on periodic table;
- Conjugate bases of top 5 strong acids (R -hand side)

Hydrolysis

- Predict if hydrolysis produces an acidic, basic, or neutral solution

> - Cation $^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+$CB-
> $-\quad$ Anion- $+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{OH}^{-}+\mathrm{CA}$

- Spectator ions produce neutral solutions
- If both ions undergo hydrolysis, compare Ka and Kb values (greater value wins out)
- If $\mathrm{Ka}=\mathrm{Kb}$, then prediction would be neutral solution
- For amphiprotic ions, determine if $\mathrm{Ka}>\mathrm{Kb}$ (acidic) or $\mathrm{Ka}<\mathrm{Kb}$ (basic)

Indicators

- Mixture of weak acid and conjugate base, each with distinguishing colours

$$
\mathrm{HIn}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{In}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

- Transition point: [HIn] = [In-]
- Colour change occurs
- Shift in equilibrium (Le Chatelier)
- Add $\mathrm{H}_{3} \mathrm{O}^{+}$, shift LEFT to HIn
- Add OH^{-}, shift RIGHT to $\mathbf{I n}^{-}$

Indicators

- Calculate transition point pH (mid-point of range)
- Calculate Ka of indicator

$$
-\mathrm{pH}(@ \text { тР })=\mathrm{pKa}
$$

- Suggest appropriate indicator for experiments

Erythrosin B ORANGE
$3 \quad 4$

Methyl Orange
Bromocresol Green Bromocresol Purple

\square
BLUE Bromothymol Blue m-Cresol Purple Phenolphthalein

```
                                YELLOW
```

 PURPLE
    ```
                                YELLOW
```

\qquad

Acid-Base Titrations

- Standard solution - in buret (known conc \& vol)
- Sample solution - in flask (+ indicator) (known vol, unknown conc)
- Equivalence point - moles acid = moles base; rapidly rising/falling pH
- Choose indicator that has transition point (colour change) near equivalence point
- $\quad \mathrm{pH} 1 / 2=\mathrm{pH}$ at which half of volume of standard solution added
- pH $1 / 2=$ pKa of acid

Titration curves

- Review titration curves
- Note initial rise/fall of pH in weak acid/weak base titrations (prior to equivalence point)

| STANDARD |
| :--- | :--- | :---: | :---: |
| SOL'N | SAMPLE SOL'N \(\left.\quad \begin{array}{c}EQUIVALENCE

POINT\end{array}\right]\) INDICATOR

Buffers

- Buffers absorb addition of small amounts of acid or base without a big change in pH
- Mixture of weak acid and conjugate base in equilibrium
- Acidic buffers have low pH
- Basic buffers have high pH
- Outline procedure to prepare a buffer solution
- Add sufficient conjugate base/acid as a soluble salt

Buffers

- Describe equilibrium shifts as $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-} is added to buffer system
- Draw equilibrium stress graph
- Describe shift in equilibrium and net effect
- Biological buffers:
- $\mathrm{CO}_{2} / \mathrm{HCO}^{3}$ in blood plasma
- $\mathrm{H}_{2} \mathrm{PO}^{4} / \mathrm{HPO}_{4}{ }^{2-}$ in cell cytoplasm

Acid Rain

- Metal oxides form basic solutions
- Non-metal oxides form acidic solutions
- Acid rain due to excess NO_{x} and SO_{x} in atmosphere

$$
\begin{aligned}
& -\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{H}_{2} \mathrm{SO}_{3} \\
& -\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{H}_{2} \mathrm{SO}_{4} \\
& -\quad 2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{HNO}_{2}+\mathrm{HNO}_{3}
\end{aligned}
$$

MCIUMOR.com by т. McCracken

Singing in the Acid Rain.

