Name: \qquad Block: \qquad

IV. Acids \& Bases (part 1)

IV. 1 Arrhenius Acids \& Bases

You will be able to:

- Define Arrhenius acids and bases
- Write balanced equations representing the neutralization of acids by bases in solution
- List general properties of acids and bases
ACID + BASE --> SALT + WATER
\square
All neutralization reactions are based on the fact that acids produce \qquad and bases produce \qquad .

Net ionic equation: \qquad

Balancing A+B equations:

Example 1: Balance the neutralization equation of HCl and $\mathrm{Sn}(\mathrm{OH})_{4}$

Step 1: Count the number of H's and OH's in the acid + base formula	
Step 2: Balance H's and OH's using coefficients	
Step 3: Write products as the number of $\mathrm{H}_{2} \mathrm{O}$ molecules and formation of salt	

PROPERTIES

Acids $\left(\mathbf{H}^{+}\right)$	Bases $\left(\mathbf{O H}^{-}\right)$
a)	a)
b)	b)
c)	c)
d)	d)
e)	e)

IV. 2 Common Acids \& Bases

You will be able to:

- Write names and formulae of some common household acids and bases
- Outline some of the uses and commercial names of common household acids and bases

ACIDS

Name	Formula	Properties	Uses
Sulphuric acid			
Hydrocholoric acid			
Nitric acid			
Acetic acid			

BASES

Name	Formula	Properties	Uses
Sodium hydroxide			
Potassium hydroxide			
Ammonia			

Do WS 4-1: Common Acids \& Bases; Hebden set 21 p. 110 \#2abef, 3, 4, 7, 9

IV. 3 - IV. $4 \mathrm{H}^{+}$and Bronsted-Lowry Acids \& Bases

You will be able to:

- Identify an $\mathrm{H}_{3} \mathrm{O}^{+}$ion as a pronated $\mathrm{H}_{2} \mathrm{O}$ molecule that can be represented in shortened form as H^{+}
- Define Brønsted-Lowry acids and bases and identify Brønsted-Lowry acids and bases in an equation
- Define amphiprotic
- Describe situations in which $\mathrm{H}_{2} \mathrm{O}$ would act as an acid or base
\qquad
H^{+}is very reactive: highly concentrated positive charge that is very attracted to any negative charge.

\mathbf{H}^{+}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{H}_{3} \mathrm{O}^{+}$	
$\mathrm{H}^{+}=$		$\mathrm{H}_{3} \mathrm{O}^{+}=$ or	Therefore, $H^{+}(a q)$ is actually $\mathrm{H}_{3} \mathrm{O}^{+}$(aq) when you write the IONIZATION of an acid.

All acid solutions contain hydronium $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ions. It is the hydronium ion which gives all acids their properties (like sour taste, indicator colours, reactivity with metals etc.)

Writing the dissociation of acids in water:

Example 2: Write the ionization equation when $\mathrm{HCl}_{(\mathrm{g})}$ is added to water to produce $\mathrm{HCl}_{(\mathrm{aq})}$.
Previous way: \qquad
Ionization equation: \qquad

Brønsted-Lowry theory of acids and bases allows for
Bronsted-Lowry definitions: ACID \qquad

BASE \qquad

- When a substance loses a proton (\qquad), it turns into something with and \qquad (which means the same as one more (-) charge.)
- When a substance gains a proton (\qquad), it turns into something with and \qquad (which means the same as one less (-) charge.)
*According to Brønsted-Lowry definitions, $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ can act \qquad .

AMPHIPROTIC = \qquad
Examples: $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, $\mathrm{HS}^{-}, \mathrm{HCO}_{3}^{-}$
*In every Bronsted-Lowry reaction, there is an acid and a base on BOTH sides of the equation. *
Example 3ab: Determine which substances are acids and bases in the following B-L equations:

Step 1: Determine which reactant gains or loses a proton	Ex. A	Ex. B
	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
Step 2: Determine the opposite substance on the products side (conjugate pair)		
Step 3: Each side must have BOTH and acid and a base		

Do Hebden set 22: p. 115-119 \#10, 11, 13, 14

IV. 5 Conjuagte Acids \& Bases

You will be able to:

- Define conjugate acid-base pair
- Identify the conjugate of a given acid or base
- Show than in any Brønsted-Lowry acid-base equation there are two conjugate pairs present

$$
\text { ACID A + BASE B } \leftrightarrows \text { BASE A + ACID B }
$$

- A Bronsted-Lowry acid-base reaction just involves an equilibrium proton transfer.
- If a proton is transferred during the forward reaction, we can also assume there will be a proton transfer in the reverse reaction.

CONJUGATE ACID-BASE PAIR (or CONJUGATE PAIR) = \qquad

CONJUGATE ACID is \qquad
CONJUGATE BASE is \qquad
In the equilibrium reaction, $\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH} 3+\mathrm{H}_{3} \mathrm{O}^{+}$, there are two conjugate pairs.

Conjugate pair	Conjugate acid	Conjugate base

Example 4: Identify the conjugate acid-base pairs in each of the following reactions:
a) $\mathrm{NH} 3+\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{NH}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

Pair 1: (acid) \qquad (base)

Pair 2: (acid) \qquad (base)
\qquad
b) $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftarrows \mathrm{H}_{3} \mathrm{PO} 4+\mathrm{HSO}_{3}{ }^{-}$

Pair 1: (acid) \qquad (base)

Pair 2: (acid) \qquad (base)

Example 5: To determine the conjugate base or conjugate acid of a given substance,

Example: Give the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$

Example: Give the conjugate acid of $\mathrm{HSO}_{4}{ }^{-}$
Do Hebden set 23: p. 121 \#16-19

IV. 6 "Strong and Weak" Acids \& Bases

You will be able to:

- Relate electrical conductivity in a solution to the total concentration of ions in a solution
- Define and give several examples for the following terms: strong acid, strong base, weak acid, weak base
- Write equations to show what happens when strong and weak acids and bases are dissolved in water
- Compare the relative strengths of acids or bases by using a table of relative acid strengths
- Predict whether products or reactants are favoured in an acid-base equilibrium by comparing the strength of the two acids (or two bases)
- Compare the relative concentrations of $\mathrm{H}_{3} \mathrm{O}^{-}\left(\right.$or $\left.\mathrm{OH}^{-}\right)$between two acids (or between two bases) using their relative positions on an acid strength table
- WEAK and STRONG refer to \qquad .
- DILUTE and CONCENTRATED refer to \qquad .

A STRONG ACID or BASE is \qquad

A WEAK ACID or BASE is \qquad

See Data table, "Relative Strengths of Bronsted-Lowry Acids and Bases" (p. 334 Hebden)

- Equilibrium (double arrow) reactions involve weak acids and bases, NOT strong acids and bases.

Strong acids	Weak acids (left) Weak bases (right)	Strong bases
100% ionization one-way arrows high K_{a} Examples: $\mathrm{HClO}_{4}, \mathrm{HI}, \mathrm{HBr}, \mathrm{HCl}$, $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ In a Strong Acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[$Acid $]$	Less than 100% ionization (usually $<5 \%$ ionized) double arrows (equilibrium) $\mathrm{K}_{\mathrm{a}}=1.0 \text { to } 1.0 \times 10^{-14}$ Amphiprotic compounds can be on both sides (left acting as an acid, on the right acting as a base.) Ex.) $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \leftrightarrows \mathrm{H}^{+}+\mathrm{HPO}_{4}{ }^{2-}$ Ex.) $\mathrm{H}_{3} \mathrm{PO}_{4} \leftrightarrows \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	100% ionization one-way arrows low K_{a} Examples: O^{2-} and $\mathrm{NH}_{2}{ }^{-}$ metal hydroxides: NaOH , $\mathrm{KOH}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Ca}(\mathrm{OH})_{2}$, $\mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{Zn}(\mathrm{OH})_{2}$ In a Strong Base, [OH-] $=[$ Base $]$ x \# of OH's in formula

The stronger the ACID, the a) \qquad ,
b) \qquad ,
c) \qquad .

The stronger the BASE, the
a) \qquad ,
b) \qquad ,
c) \qquad .

Example 6: What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 0.20 MHCl ?
Step 1: Write out ionization of HCl in $\mathrm{H}_{2} \mathrm{O}$

Step 2: Use molar ratio to determine []
Example 7: What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 0.40 M sulphuric acid?

Step 1: Write out ionization of acid in $\mathrm{H}_{2} \mathrm{O}$	
Step 2: Use molar ratio to determine []	
Note: The STRONG acids all have the same strengths in aqueous solutions. $\left[\mathrm{H}_{3} 0+\right]=$ [acid]	

Example 8: What is the $\left[\mathrm{OH}^{-}\right]$in $0.10 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?

Step 1: Write out ionization of $\mathrm{Ba}(\mathrm{OH})_{2}$ in $\mathrm{H}_{2} \mathrm{O}$	
Step 2: Use molar ratio to determine []	

The strongest base which can exist in high concentrations in water solution is OH^{-} $\mathrm{H}_{3} \mathrm{O}^{+}$is the strongest acid that can exist in an undissociated form in water solution.
Concentration of ions determines its electrial conductivity.

Acid-Base Equilibria \& Relative Strengths of Acids \& Bases

- Equilibrium favors the side with the weaker conjugate acid and the weaker conjugate base.
"only as strong as weakest link" or "strong push the weak"
Example 9: Consider the mixing of $\mathbf{H}_{2} \mathrm{PO}_{4}{ }^{-}$and some $\mathrm{CO}_{3}{ }^{2-}$ At equilibrium, which will be favoured, reactants or products?

Step 1: Determine which reactant acts as the acid and base	
Step 2: Write out ionization equation	
Step 3: Determine which is the stronger of the 2 acids	
Step 4: Equilibrium favours the side of the weaker acid	

Example 10: Complete the reaction of $\mathrm{HSO}_{4}{ }^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$. At equilibrium, which will be favoured, reactants or products?

Step 1: Determine which reactant acts as the acid and base (both are amphiprotic)	
Step 2: Write out ionization equation	
Step 3: Compare the two conjugate acids	
Step 4: Equilibrium favours the side of the weaker acid	

Example 11: Complete the net ionic reaction between two salts, NaHSO_{3} and $\mathrm{K}_{2} \mathrm{HPO}_{4}$, and state whether equilibrium favors reactants or products.

Step 1: Write the dissociation equation for each reactant. Discard spectators of A-B reactions*	
Step 2: Determine which reactant acts as the acid and base	
Step 3: Write out ionization equation	
Step 4: Compare the two conjugate acids	
Step 5: Equilibrium favours the side of the weaker acid	

*NOTE: All alkali ions $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Li}^{+} \ldots$ etc..... are spectators in Acid-Base reactions. Also top five ions right side of acid chart $\left(\mathrm{ClO}_{4}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{NO}_{3}^{-}\right)$are spectators in Acid-Base reactions.

Relating $K_{\text {eq }}$ to acid-base equilibrium
If products are favored K_{eq} is large (>1)

Do Hebden set 24: p. 125 \# 21-23, 24abcd, 26, 27

