Name: \qquad Block: \qquad

IV. Acids \& Bases (part 2)

IV. 7 Ionization constant of water- \mathbf{K}_{w}

You will be able to:

- Write equations representing the ionization of water using either $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}, or H^{+}and OH^{-}
- Predict the effect of the addition of an acid or base to the equilibrium system: $2 \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
- State the relative concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in acid, base, and neutral solutions
- Write the equilibrium expression for the ion product constant of water (water ionization constant: Kw)
- State the value of Kw at $25^{\circ} \mathrm{C}$
- Describe and explain the variation in the value of Kw with temperature
- Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$(or OH^{-}) given the other, using Kw

$$
\text { STRONG ACID + STRONG BASE } \rightleftarrows \text { SALT + WATER + HEAT }
$$

Example:

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \longleftrightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+59 \mathrm{~kJ}
$$

Complete ionic equation: $\quad \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightleftarrows \mathrm{Na}^{+}{ }_{(\mathrm{aq)}}+\mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Net ionic equation:

Reverse equation is the SELF-IONIZATION OF WATER	\square

Write the K_{eq} expression for this equilibrium:

$$
\mathbf{K}_{\mathrm{eq}}=\mathbf{K}_{\mathbf{w}}=
$$

Definitions:	NEUTRAL solution	
	ACIDIC solution	
	BASIC solution	

Since reaction is endothermic: $\quad 59 \mathrm{KJ}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\text {aq) }}^{-}$
As temp increases: shifts \qquad , \qquad are favoured,

- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, and K_{w} \qquad
- $\mathrm{pH}, \mathrm{pOH}$, and pKw \qquad (details later).
\qquad , \qquad are favoured,
- $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, and K_{w} \qquad
- $\mathrm{pH}, \mathrm{pOH}$, and pKw \qquad (details later).

Relative concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in solutions:

Example 12: Calculate $\left[\mathrm{OH}^{-}\right]$in $0.00600 \mathrm{M} \mathrm{HNO}_{3}$ at $60^{\circ} \mathrm{C}$. Kw at $60^{\circ} \mathrm{C}=9.55 \times 10^{-14}$

Step 1: Remember $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[$strong acid $]$	
Step 2: Write out Kw expression at temp	
Step 3: Solve for [OH-]	

Example 13: Find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $0.020 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ at $\mathbf{2 5}^{\circ} \mathrm{C}$.

Step 1: Remember [OH $]=[$ base $]$ x of OH's	
Step 2: Write out Kw expression at temp	
Step 3: Solve for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	

Do Hebden set 25: p. 127 \#28, 29abc, 30cd

IV.8-9 $K_{\underline{a}}$ and $K_{\underline{b}}$

You will be able to:

- Write Ka and Kb equilibrium expressions for weak acids or weak bases
- Relate the magnitude of Ka or Kb to the strength of the acid or base
- Calculate the value of Kb for a base given the value of Ka of its conjugate acid (and vice versa)

The K_{a} is the acid ionization constant of a WEAK acid. For example,
Write the ionization of boric acid in water:
The equilibrium expression for the ionization is: $\quad \mathbf{K}_{\mathrm{a}}=$
According to the table of relative strengths,
$\mathbf{K}_{\mathrm{a}}=$
The larger the Ka, the \qquad the ACID.
The smaller the Ka, the \qquad the ACID.
*For STRONG ACIDS, the Ka is "very large". Explain why.

The K_{b} is the base ionization constant of a WEAK base. For example,
Write the ionization of ammonia in water:
The equilibrium expression for the ionization is: $\quad \mathbf{K}_{\mathbf{b}}=$
The table of relative strengths only lists the Ka!

Luckily, there is a relationship between conjugate pairs!

For a CONJUGATE PAIR: $\mathbf{K}_{\mathrm{a}}($ conj acid $) \times K_{\mathrm{b}}(\operatorname{conj}$ base $)=\mathbf{K}_{\mathrm{w}}$

Using this equation, you can find the K_{b} values for weak bases from the table!
Example 14: Calculate the K_{b} of $\mathrm{HCO}_{3}{ }^{-}$at $\mathbf{2 5}^{\circ} \mathrm{C}$.

Step 1: Look down the RIGHT (base) side of table until you find it. Write out the ionization of its CONJUGATE ACID.	
Step 2: Write out the Kb expression as its relationship to the Ka of its conj base.	
Step 3: Solve for Kb	

\boldsymbol{K}_{a} and \boldsymbol{K}_{b} can be compared against each other!

The greater the \mathbf{K}_{a} value, the \qquad the acid.
The greater the $\mathbf{K}_{\mathbf{b}}$ value, the \qquad the base.

Using K_{a} and K_{b} to differentiate amphiprotic actions:
Example 15: When $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$reacts with water, will it preferrentially act as an ACID or a BASE?

Step 1: Write out the ionization equations for amphiprotic substance acting as an acid and a base	As an ACID:
Step 2: Find the Ka and Kb values for each ionization. Solve for Kb.	
Step 3: Compare Ka and Kb. Larger value will determine action.	

Sample calculation involving K_{a} and the WEAK (there will be many more of these coming up...)

Example 16: Find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 0.10 M HF .
Step 1: Write out equilibrium equation for ionization

Step 2: Set up ICE table

Step 3: Write out the Ka expression

Step 4: State assumption

Step 5: Solve for x
$\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$

Do Hebden set 26: p. 128 \#31b, 32a, 33-35ab

IV. 10 Relative Strengths of Acids and Bases

(already covered in Part 1 -- "Will equilibrium favour products or reactants?")
Summary:
In a B-L acid-base equilibrium, the side that has the \qquad acid/base will be favoured.
"Strong PUSH the weak"
A second method for determining which side is favoured uses K_{a} :

| $[$ products $]$ |
| :--- | :--- |
| [reactants] |$=\mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{\mathrm{a}} \text { (reactant acid) }}{\mathrm{K}_{\mathrm{a}} \text { (product acid) }} \quad$ (| You only have to use one method, so pick |
| :--- |
| whichever one works for you! |

Relating $\mathbf{K}_{\text {eq }}$ to acid-base equilibrium

If products are favored K_{eq} is large (>1)
If reactants are favored K_{eq} is small (<1)

IV. 11 pH and pOH

You will be able to:

- Define pH and pOH
- Define pKw , give its value at $25^{\circ} \mathrm{C}$, and its relation to pH and pOH
- Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] or [OH-] from pH and pOH
- Describe the pH scale with reference to everyday solutions
$\mathbf{p H}$ is a shorthand method of showing acidity (or basicity, alkalinity)

$$
\mathrm{pH}=\text { "powers of } 10 \text { of }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Definition of $\mathbf{p H}$

$\mathrm{pH}=$
$\mathrm{pOH}=$

LOGS and ANTI-LOGS

This is a BRIEF summary of the math necessary for pH and pOH calculations. If you want more, check Hebden p. 134-139. p

In this class, all our log values will always be "logarithm to the base $\mathbf{1 0}$ ".

- LOG = \qquad
- ANTILOG = \qquad
$\log \left(10^{x}\right)=x$
$\operatorname{antilog}(x)=10^{x}$

CHECK your calculator!! LOG: Enter: $1 \rightarrow$ EXP $\rightarrow 7 \rightarrow+/-\rightarrow$ LOG $\rightarrow+/-$ and the answer should be 7 ANTILOG: $4 \rightarrow$ INV/2nd \rightarrow LOG and the answer should be 1000

Question TYPE 1: Converting from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $[\mathrm{OH}-]$ to pH and pOH

Example 17: Find the pH of 0.030 M HCl
Step 1: Write out equation for ionization. Remember,
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$[strong acid]
Step 2: Write out pH definition. Solve for pH . *Sig fig counting starts after $\mathrm{pH} / \mathrm{pOH}$ decimal place.*

Question TYPE 2: Converting from pH or pOH to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $[\mathrm{OH}-]$
Example 18: If $\mathrm{pOH}=11.682$, what is the $[\mathrm{OH}-]$ in $\mathrm{Ca}(\mathrm{OH})_{2}$?

Step 1: Write out definition of pOH. Isolate [OH-] (conver to antilog).	
Step 2: Solve for [OH-].	
Step 3: Write out ionization equation. Remember, [OH-] $=$ [strong base] x \# OH's SSig fig counting starts after pH/pOH decimal place.*	

pH and pOH Relationships

Derive the relationship of pH and pOH :

Write out the Kw expression $\mathrm{K}_{\mathrm{w}}=$
and value at $25^{\circ} \mathrm{C}$
Take the \log of both sides
Rewrite using:
$\log (A \times B)=\log (A)+\log (B)$
Plug in value of Kw
Therefore,
Remove negative (multiply
by -1)
Therefore,

Use "the SQUARE" for calculations at $25^{\circ} \mathrm{C}$

SUMMARY:

At ALL temperatures: $\quad \mathrm{K}_{\mathrm{w}}=$ \qquad
$\mathrm{pK}_{\mathrm{w}}=$ \qquad

$$
\mathrm{pK}_{\mathrm{w}}=
$$

\qquad

At $25^{\circ} \mathrm{C}$ ONLY:

$K_{w}=$ \qquad
$\mathrm{pK}_{\mathrm{w}}=$ \qquad
$\mathrm{pK}_{\mathrm{w}}=$ \qquad

Question TYPE 3: Calculate [OH-] from pH or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from pOH

Example 19: If $\mathrm{pH}=6.330$, what is the $[\mathrm{OH}-]$?
Step 1: Calculate pOH from pH

Step 2: Calculate [OH-]
from pOH

The pH Scale

At $25{ }^{\circ} \mathrm{C}$:	In neutral water	pH $=7.0$
	In acid solution	$\mathbf{p H}<7.0$
	In basic solution	$\mathbf{p H}>7.0$

pH	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$\left[\mathrm{OH}^{-}\right]$
pOH
14
0

Pattens \& trends:

1. As pH \qquad , pOH \qquad .
2. a) A solution is \qquad when its $\mathbf{p H}$ is \qquad 7 or $\mathbf{p O H}$ is \qquad 7.
b) A solution is \qquad when its $\mathbf{p H}$ is \qquad 7 , or $\mathbf{p O H}$ is \qquad 7.
3. The pH scale is LOGARITHMIC, so...

- Each value on the pH scale represents a 10 x difference.
- When the $\mathbf{p H}$ is increased by $\mathbf{1}$, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is \qquad .

4. In neutral water $\mathrm{pH}=\mathrm{pOH}$ at any temp.

- $\mathrm{pH} \& \mathrm{pOH}=7.00$ at $25^{\circ} \mathrm{C}$ ONLY
- At lower temps, pH and pOH are \qquad 7
- At higher temps, pH and pOH are \qquad 7

Do Hebden set 27: p. 139 \#49ab, 50abe, 51, 52; p. 141 \#55abcd, 56abed (Very important to master these calculations!)

IV. 12 Mixtures of STRONG Acids and Bases

You will be able to:

- Determine whether a solution is acidic, basic, or neutral depending on the relative amounts of reactants involved.

Example 20: If 15.0 mL of 0.100 M HBr is added to 25.0 mL of $0.100 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$, what is the pH of the resulting mixture?

Step 1: Write out ionization equations for both the SA and SB. Determine [$]$ based on	
molar ratios.	

Example 21: What mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ must be added to 500.0 mL of 0.0150 M HBr to create a solution with $\mathrm{pH}=2.750$? (Assume no volume change.)

Step 1: Determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ from pH	
Step 2: Write expression for excess ion. Solve for diluted ion.	
Step 3: Convert [] to grams	

Do Hebden set 28: p. 143 \#58-60, 63-65

