Name:

Block:

## IV. Acids & Bases (part 2)

### IV.7 Ionization constant of water-K<sub>w</sub>

You will be able to:

- Write equations representing the ionization of water using either  $H_3O^+$  and  $OH^-$ , or  $H^+$  and  $OH^-$
- Predict the effect of the addition of an acid or base to the equilibrium system:  $2H_2O \leftrightarrow H_3O^+ + OH^-$ ٠
- State the relative concentrations of H<sub>3</sub>O<sup>+</sup> and OH<sup>-</sup> in acid, base, and neutral solutions
- Write the equilibrium expression for the ion product constant of water (water ionization constant: Kw) •
- State the value of Kw at 25°C •
- Describe and explain the variation in the value of Kw with temperature .
- Calculate the concentration of  $H_3O^+$  (or  $OH^-$ ) given the other, using Kw

\_\_\_\_\_

### **STRONG ACID** + **STRONG BASE ⇐** SALT + WATER + HEAT

Example:

 $HCl_{(aq)} + NaOH_{(aq)} \rightleftharpoons NaCl_{(aq)} + H_2O_{(1)} + 59kJ$ 

Complete ionic equation:

 $H^+_{(aq)} + Cl^-_{(aq)} + Na^+_{(aq)} + OH^-_{(aq)} \rightleftharpoons Na^+_{(aq)} + Cl^-_{(aq)} + H_2O_{(l)}$ 

Net ionic equation:

| <i>Reverse equation</i> is the SELF-IONIZATION OF WATER | , or |
|---------------------------------------------------------|------|
|                                                         |      |

Write the K<sub>eq</sub> expression for this equilibrium:

 $K_{eq} = K_w =$ 

| <u>Definitions:</u> | <b>NEUTRAL</b> solution                                    |                                                            |
|---------------------|------------------------------------------------------------|------------------------------------------------------------|
|                     | <b>ACIDIC</b> solution                                     |                                                            |
|                     | <b>BASIC</b> solution                                      |                                                            |
| Since reaction is   | s endothermic: 59KJ +                                      | $2H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + OH^{(aq)}$ |
| As temp i           | <i>ncreases:</i> shifts<br>• $[H_3O^+]$ , $[OH^-]$ , and K | , are favoured,                                            |
|                     | • pH, pOH, and pKw                                         | (details later).                                           |

pH, pOH, and pKw

As temp decreases: shifts \_\_\_\_\_, \_\_\_\_are favoured,

- [H<sub>3</sub>O<sup>+</sup>], [OH<sup>-</sup>], and K<sub>w</sub> • pH, pOH, and pKw \_\_\_\_\_\_ (details later).

#### Relative concentrations of H<sub>3</sub>O<sup>+</sup> and OH<sup>-</sup> in solutions:

#### Example 12: Calculate [OH<sup>-</sup>] in 0.00600 M HNO<sub>3</sub> at 60<sup>o</sup>C. Kw at $60^{\circ}C = 9.55 \times 10^{-14}$

| Step 1: Remember<br>$[H_3O^+] = [strong acid]$ |  |
|------------------------------------------------|--|
| Step 2: Write out Kw expression at temp        |  |
| Step 3: Solve for [OH-]                        |  |

#### Example 13: Find [H<sub>3</sub>O<sup>+</sup>] in 0.020 M Ba(OH)<sub>2</sub> at 25°C.

| Step 1: Remember<br>[OH <sup>-</sup> ] = [base] x # of OH's |  |
|-------------------------------------------------------------|--|
| Step 2: Write out Kw expression at temp                     |  |
| Step 3: Solve for [H <sub>3</sub> O <sup>+</sup> ]          |  |

#### Do Hebden set 25: p. 127 #28, 29abc, 30cd

### IV.8-9 K<sub>a</sub> and K<sub>b</sub>

You will be able to:

- Write Ka and Kb equilibrium expressions for weak acids or weak bases
- Relate the magnitude of Ka or Kb to the strength of the acid or base
- Calculate the value of Kb for a base given the value of Ka of its conjugate acid (and vice versa)

\_\_\_\_\_

### The K<sub>a</sub> is the acid ionization constant of a WEAK acid. For example,

Write the ionization of boric acid in water:

The equilibrium expression for the ionization is:

According to the *table of relative strengths*,

K. =

 $K_a =$ 

The larger the Ka, the \_\_\_\_\_\_the ACID.The smaller the Ka, the \_\_\_\_\_\_the ACID.

### \*For STRONG ACIDS, the Ka is "very large". Explain why.

#### The K<sub>b</sub> is the base ionization constant of a WEAK base. For example,

| Write the ionization of      | ammonia in water:                                                 |
|------------------------------|-------------------------------------------------------------------|
| The equilibrium expres       | ssion for the ionization is: $\mathbf{K}_{\mathbf{b}} =$          |
| The table of rela            | ative strengths only                                              |
| lists the Ka!                |                                                                   |
| Luckily, ther<br>conjugate p | re is a relationship between<br>pairs!                            |
| For a CON.                   | <b>JUGATE PAIR:</b> $K_a$ (conj acid) x $K_b$ (conj base) = $K_w$ |

Using this equation, you can find the  $K_b$  values for weak bases from the table!

### Example 14: Calculate the K<sub>b</sub> of HCO<sub>3</sub><sup>-</sup> at 25°C.

| Step 1: Look down the<br>RIGHT (base) side of table<br>until you find it. Write out<br>the ionization of its<br>CONJUGATE ACID. |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|
| Step 2: Write out the Kb<br>expression as its<br>relationship to the Ka of its<br>conj base.                                    |  |
| Step 3: Solve for Kb                                                                                                            |  |

 $K_a$  and  $K_b$  can be compared against each other!

The greater the  $K_a$  value, the \_\_\_\_\_\_ the acid. The greater the  $K_b$  value, the \_\_\_\_\_\_ the base.

### Using Ka and Kb to differentiate amphiprotic actions:

Example 15: When HC<sub>2</sub>O<sub>4</sub> reacts with water, will it preferrentially act as an ACID or a BASE?

| Step 1: Write out the<br>ionization equations for<br>amphiprotic substance<br>acting as an acid and a<br>base | As an ACID:<br>As a BASE: |
|---------------------------------------------------------------------------------------------------------------|---------------------------|
| Step 2: Find the Ka and Kb values for each ionization. Solve for Kb.                                          |                           |
| Step 3: Compare Ka and<br>Kb. Larger value will<br>determine action.                                          |                           |

### Example 16: Find the [H<sub>3</sub>O<sup>+</sup>] in 0.10 M HF.

| Step 1: Write out<br>equilibrium equation for<br><i>ionization</i> |  |
|--------------------------------------------------------------------|--|
| Step 2: Set up ICE table                                           |  |
| Step 3: Write out the Ka expression                                |  |
| Step 4: State assumption                                           |  |
| Step 5: Solve for x<br>([H <sub>3</sub> O <sup>+</sup> ])          |  |

### Do Hebden set 26: p. 128 #31b, 32a, 33-35ab

### **IV.10 Relative Strengths of Acids and Bases**

(already covered in Part 1 -- "Will equilibrium favour products or reactants?")

**Summary:** 

In a B-L acid-base equilibrium, the side that has the \_\_\_\_\_\_ acid/base will be favoured.

A second method for determining which side is favoured uses K<sub>a</sub>:



### Relating K<sub>eq</sub> to acid-base equilibrium

If <u>products</u> are favored  $K_{eq}$  is <u>large</u> (>1) If <u>reactants</u> are favored  $K_{eq}$  is <u>small</u> (<1)

### IV.11 pH and pOH

You will be able to:

- Define pH and pOH
- Define pKw, give its value at 25°C, and its relation to pH and pOH
- Calculate  $[H_3O^+]$  or  $[OH_-]$  from pH and pOH
- Describe the pH scale with reference to everyday solutions

-----

**pH** is a shorthand method of showing acidity (or basicity, alkalinity)  $pH = "powers of 10 of [H_3O^+]$ 

| If $[H_3O^+] = 0.10 \text{ M}$<br>$[H_3O^+] = 0.0001$ | $1 (1.0 \times 10^{-1} \text{ M}) \text{ pH} = 1.00$<br>0 M (1.0 x10 <sup>-4</sup> M) pH = 4.00<br>What is    | the relationship between |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------|
| Definition of pH                                      |                                                                                                               |                          |
| pH =                                                  |                                                                                                               |                          |
| pOH =                                                 |                                                                                                               |                          |
| This is a BRIEF su<br>If y                            | <b>LOGS and ANTI-LOGS</b><br>mmary of the math necessary for pH and<br>you want more, check Hebden p. 134-139 | pOH calculations.<br>. p |
| In this class, all our log values • LOG =             | will always be <b>"logarithm to the base 10</b>                                                               | $\log(10^x) = x$         |
| • ANTILOG =                                           |                                                                                                               | antilog(x) = $10^x$      |

CHECK your calculator!!

LOG: Enter: 1  $\rightarrow$  EXP  $\rightarrow$  7  $\rightarrow$  +/-  $\rightarrow$  LOG  $\rightarrow$  +/- and the answer should be 7 ANTILOG: 4  $\rightarrow$  INV/2nd  $\rightarrow$  LOG and the answer should be 1000

#### Question TYPE 1: Converting from [H<sub>3</sub>O<sup>+</sup>] or [OH-] to pH and pOH

#### Example 17: Find the pH of 0.030 M HCl

| Step 1: Write out equation<br>for ionization. Remember,<br>$[H_3O^+] = [strong acid]$                                   |  |
|-------------------------------------------------------------------------------------------------------------------------|--|
| Step 2: Write out pH<br>definition. Solve for pH.<br>*Sig fig counting starts<br><i>after pH/pOH</i> decimal<br>place.* |  |

### Question TYPE 2: Converting from pH or pOH to [H<sub>3</sub>O<sup>+</sup>] and [OH-]

### Example 18: If pOH = 11.682, what is the [OH-] in $Ca(OH)_2$ ?

| Step 1: Write out<br>definition of pOH. Isolate<br>[OH-] (conver to antilog).                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Step 2: Solve for [OH-].                                                                                                                                       |  |
| Step 3: Write out<br>ionization equation.<br>Remember, [OH-] =<br>[strong base] x # OH's<br>*Sig fig counting starts<br><i>after pH/pOH</i> decimal<br>place.* |  |

### pH and pOH Relationships

### Derive the relationship of pH and pOH:

Write out the Kw expression  $K_w =$ and value at 25°C Take the log of both sides Rewrite using: log(A x B) = log(A) + log(B)Plug in value of Kw Therefore, Remove negative (multiply by -1)

Therefore,





| SUMMARY:             |                   |
|----------------------|-------------------|
| At ALL temperatures: | K <sub>w</sub> =  |
|                      | pK <sub>w</sub> = |
|                      | $pK_w = $         |
|                      |                   |
| At 25°C ONLY:        | K <sub>w</sub> =  |
|                      | pK <sub>w</sub> = |
|                      | $pK_w =$          |
|                      |                   |

#### Question TYPE 3: Calculate [OH-] from pH or [H<sub>3</sub>O<sup>+</sup>] from pOH

#### Example 19: If pH = 6.330, what is the [OH-]?

| Step 1: Calculate pOH from pH       |  |
|-------------------------------------|--|
| Step 2: Calculate [OH-]<br>from pOH |  |

### The pH Scale



### Do Hebden set 27: p. 139 #49ab, 50abe, 51, 52; p. 141 #55abcd, 56abcd (Very important to master these calculations!)

### **IV.12 Mixtures of STRONG Acids and Bases**

You will be able to:

• Determine whether a solution is acidic, basic, or neutral depending on the relative amounts of reactants involved.

# Example 20: If 15.0 mL of 0.100 M HBr is added to 25.0 mL of 0.100 M Mg(OH)<sub>2</sub>, what is the pH of the resulting mixture?

| Step 1: Write out ionization<br>equations for both the SA and<br>SB. Determine [] based on<br>molar ratios.                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|
| Step 2: Calculate diluted $[H_3O^+]$ and $[OH^-]$ using $C_1V_1=C_2V_2$                                                               |  |
| Step 3: Determine excess ion $([H_3O^+] \text{ and } [OH^-] \text{ should be } 1:1, \text{ but one will be in excess from dilution})$ |  |
| Step 4: Write out pH or pOH expression, determining which ion in excess.                                                              |  |
| Step 5: Solve for pH                                                                                                                  |  |

## Example 21: What mass of Ca(OH)<sub>2</sub> must be added to 500.0 mL of 0.0150 M HBr to create a solution with pH = 2.750? (Assume no volume change.)

| Step 1: Determine the [H <sub>3</sub> O <sup>+</sup> ] from pH        |  |
|-----------------------------------------------------------------------|--|
| Step 2: Write expression for<br>excess ion. Solve for diluted<br>ion. |  |
| Step 3: Convert [ ] to grams                                          |  |

### Do Hebden set 28: p. 143 #58-60, 63-65