IV. 16 \& IV.18: Acid-Base Titrations

You will be able to:

- Design, perform, and analyze a titration experiment of: strong acid + strong base, strong base + weak acid, and strong acid + weak base.
- Explain the difference between the equivalence point of a SA-SB titration and the equivalence point of a WA/WBSB/SA titration
- Interpret titration curves plotted from experimental data
- Select indicators whose transition point coincides with the equivalence point of the titration reaction
- Calculate the concentration of an acid or base using titration data or similar data (ex. grams or moles)
- Calculate the volume of an acid or base of known molarity needed to completely react with a given amount of acid or base
- Calculate the pH of a solution formed when a strong acid is mixed with a strong base

Review of titrations

TITRATION:

- STANDARD solution (TITRANT) =
- SAMPLE solution = \qquad concentration.
- EQUIVALENCE POINT (or "stoichiometric point") is \qquad
- INDICATOR signifies the \qquad

The best indicator will have the pH at equivalence point withing their transition range.

Important info in titration problems:

- concentration of acid concentration of base base/acid mole ratio
- volume of acid volume of base

I. Titration of STRONG ACID and STRONG BASE

Example 34: We have 150 mL of NaOH at an unknown concentration. 75 mL of 0.300 M HCl must be added to reach the equivalence point. What is the [NaOH]?

Step 1: Write out the reaction equation.	
Step 2: Calculate moles of standard solution used to reach equivalence point (mol = CV)	
Step 3: Use molar ratio to	

convert to moles of sample solution	
Step 4: Use volume of sample solution to find $[\mathrm{NaOH}](\mathrm{C}=$ $\mathrm{mol} / \mathrm{V})$	

Example 35: 300 mL of unknown $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ is titrated with 600 mL of 0.400 M KOH . What is the [$\mathrm{H}_{2} \mathrm{SO}_{4}$]?

Step 1: Write out the reaction equation.	
Step 2: Calculate moles of standard solution used to reach equivalence point (mol = CV)	
Step 3: Use molar ratio to convert to moles of sample solution	
Step 4: Use volume of sample solution to find $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right](\mathrm{C}=$ mol/V)	

TITRATION CURVES

Titration Story:

A base of known concentration (ex: 0.01 M NaOH) is slowly added to a measured volume of an acid of known concentration $(25.0 \mathrm{~mL}$ of 0.01 M HCl$)$. Meanwhile, the pH of the mixture is monitored by a pH meter. The results can be plotted in a graph of pH vs. volume of base added.

The curve on the graph that results from this is called a TITRATION CURVE.

We can calculate the pH of the mixture in the beaker throughout the titration. There are 4 stages:

1. Acid before any base is added
2. Based added but acid in excess
3. Equivalence point
4. Base in excess

STRONG ACID-STRONG BASE TITRATION CURVE

Remember: $\mathbf{S A}+\mathbf{S B} \rightarrow$ SALT $+\mathrm{H}_{2} \mathrm{O}$

Therefore: The SALT formed from a SA-SB titration is ALWAYS \qquad
Since there is no SA, no SB and just $\mathrm{H}_{2} \mathrm{O}$ and a NEUTRAL salt, the pH of the solution formed will be $\underline{\mathbf{7 . 0 0}}$

Conclusion:

\qquad

A good INDICATOR for this titration would be \qquad .

Do Hebden set 31 p. 158 \#94-97, p. 167 \#24
Read p. 155-157 examples "Partial Neutralization",
"\% Purity" and "Molar Mass", then try p. 158 \#98-107

II. Titration of STRONG BASE and WEAK ACID

Example 36: 150 mL of unknown $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ is titrated with 220 mL of 0.250 M NaOH to reach the equivalence point. What is the $\left[\mathrm{CH}_{3} \mathbf{C O O H}\right]$? ${ }^{*}$ Calc the same as $S B-S A$ *
Step 1: Write out the reaction equation.

Step 2: Calculate moles of standard solution used to reach equivalence point $(\mathrm{mol}=\mathrm{CV})$

Step 3: Use molar ratio to convert to moles of sample solution

Step 4: Use volume of sample solution to find $\left[\mathrm{CH}_{3} \mathrm{CHOOH}\right]$ ($\mathrm{C}=\mathrm{mol} / \mathrm{V}$)

STRONG BASE-WEAK ACID Titration Curve

Conclusion:

\qquad

A good INDICATOR would be \qquad

Calculating the \mathbf{K}_{a} and concentration of the weak acid: (summary of p. 169-170)

$$
\begin{aligned}
& \mathbf{p H} \mathbf{1}_{1 / 2}= \\
& {[\mathbf{W A}]_{\mathrm{EQ}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}<- \text { from initial } \mathrm{pH}}{\mathrm{~K}_{\mathrm{a}}}} \\
& {[\mathbf{W A}]_{\mathbf{I N T}}=[\mathbf{W A}]_{\mathrm{EQ}}+\mathbf{X}}
\end{aligned}
$$

III. Titration of a STRONG ACID and WEAK BASE
\square NOTE: Graph gives pH values, but need pOH for all calculations! So, FIRST convert pH to pOH.

Conclusion:

\qquad

A good INDICATOR would be \qquad

