Date:	
-------	--

IV.19-20 Buffers

You will be able to:

- Describe the tendency of buffer solutions to resist changes in pH
- Describe the composition of an acidic buffer and a basic buffer
- Describe qualitatively how the buffer equilibrium shifts as small quantities of acid or base are added to the buffer; the stress being the change in the concentration of the stronger acid (H₃O⁺) or base (OH-)
- Describe in detail a common biological buffer system
- Outline a procedure to prepare a buffer solution
- Identify the limitations in buffer systems

DEFINE:	e 	
Purpose of a l		
• It • Or we	changes in pH whene could say it	when acid or base is added.
Ex:	$WA + H_2O \rightleftharpoons H_3O^+ + WCB^-$ $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$	(WCB is "weak conjugate base")
	$K_a = $ = $[H_3O^+] = $	
	Therefore, $\mathbf{pH} = \mathbf{pK}$	Ka
	When of a are added to water, the	weak acid and its conjugate base
NOTE:	A BUFFER requires substantial amounts of	
There are two	kinds of Buffer Solutions :	
	OIC BUFFERS:uffers are useful as buffers in the acidic range (solut	ions in which pH is 7 or lower)
	Ex: "Mix 1.0 mol of CH ₃ COOH and 1.0 mo	ol of NaCH ₃ COO and dilute to 1.0 L solution.
	$K_a = \underline{\hspace{1cm}}$ Buffer $pH = pK_a = \underline{\hspace{1cm}}$	=
• BASI	Basic Buffers are useful as buffers in Ex: "Mix 1.0 mol of NH ₃ and 1.0 mol of	the basic range (solutions in which pH is 7 or higher) NH_4NO_3 and dilute to $1.0\ L$ solution."
		=

	Preparing a Buffer S
naants to aansidar	repairing a Butter b
ncepts to consider:	

Now, lets add some sodium acetate (NaCH₃COO) to the equilibrium so that [CH₃COO⁻] is 1.0 M.

 $CH_3COOH + H_2O \rightleftharpoons H_3O^+$

 When we do th 	is the		However, by LeChatelier's Principle, the
equilibrium wi	1 shift to the, car	using	and
		·	
Shifted equilibrium:	CH ₃ COOH + H ₂ O ⇄	H ₃ O ⁺ +	CH₃COO⁻

Since the acid and the base are both *WEAK*, they don't neutralize each other like a mixture of a SA and SB would. They co-exist in this equilibrium unless disturbed! A **BUFFER SOLUTION** is prepared!

Example 38: How would you prepare a solution in which the pH is buffered close to 7.2?

F	J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Step 1: pH = pKa Calculate Ka of buffer			
Step 2: Find acid that has a similar Ka value (from BL table)			
Step 3: Prepare buffer by mixing equal amounts of WA and soluble salt of its conjugate base			

Explaining Buffer Equilibrium Shifts

Work through the example by filling in the blanks.....

Original equilibrium:

Ex: A buffer solution is prepared using 1M NH₃ and 1M NH₄Cl (*Basic Buffer*)

a) Write the equilibrium equation describing this buffer.	
 b) When a small amount of HCl (SA) is added, the [OH ⁻] quicklycreases (the pH goes)	ı
c) As a result, the equilibrium shifts to the, and the [OH] graduallycreases. (the	e
pH goes back)	
 d) So, as a result of adding HCl, there was a small net crease in the [OH] (a small net crease i	n pH)

	Limitations of buffers:	
A buffer cannot hold off pH cha	nge beyone its buffering capacity.	
• If there isneutralized.	of conjugate base present, a maximum of $___$ of H_3O^+ can be	
• If there isneutralized.	of conjugate acid present, a maximum of of OH can be	
	Biological buffers:	
For Hemoglobin to work proper	ly, the pH of the blood needs to stay very close to 7.35	
Equilibrium: HHb + hemoglobin	$O_2 \leftrightarrows H_3O^+ + HbO_2^-$	oxyhemoglobir
• If pH < 7.20 ("ACIDO	SIS"),	
• If pH > 7.20 ("ALKAL	OSIS"),	,
TWO BUFFER SYSTEMS:		
a) CO ₂ /HCO ₃ : buffers human	blood plasma	

Do Hebden set 33: p. 181 #132-133, 136-138, 140; p. 183

"Hyperventilating" will lower [CO₂] in the blood, and _____

b) H₂PO₄ '/HPO₄ ²: buffers human cell cytoplasm