\qquad
\qquad

IV. Acids \& Bases (part 3)

IV.14-15 Calculations involving $\mathbf{K}_{\mathbf{a}}$ and $\mathbf{K}_{\mathbf{b}}$ (Used for the $W E A K A$ \& B)

You will be able to:

- Given the Ka, Kb, and initial concentration, calculate any of the following: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],[\mathrm{OH}-], \mathrm{pH}, \mathrm{pOH}$
- Calculate the value of Ka or Kb given the pH and initial concentration
- Calculate the initial concentration of an acid or base, given the appropriate $\mathrm{Ka}, \mathrm{Kb}, \mathrm{pH}$, or pOH values

Remember: WEAK acids/bases do not ionize completely.

- The \qquad , the \qquad is produced.

Therefore, a lower \qquad means a \qquad acid.

There are 3 TYPES of calculations involving Ka and Kb for weak acids and bases.
The following examples are interchangeable for ACIDS and BASES.
Calculations involving weak bases are similar to calculations involving weak acids, with 2 changes:
-
-

Q TYPE 1: Given [WA] and K_{a}, find $\left[\mathbf{H}_{3} \mathbf{O}^{+}\right.$] (or $\mathbf{p H}$)

Example 22: What is the pH of a 0.500 M solution of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$?

Step 1: Look up the Ka on the B-L table	
Step 2: Write out ionization equilibrium with an ICE table.	
Step 3: Write Ka expression \& substitute values.	
Step 4: State assumption.	
Assumption can ONLY be made if percent dissociation is less than 5\%. Show calc for percent dissociation.	
Step 5: Assumption	

reduces equation. Solve for $\mathrm{x}\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$.
Step 6: Convert to pH (Ka limits to 2 SD's.)

Q TYPE 2: Given [WA]/[WB] and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /[\mathrm{OH}-]$ (or $\mathrm{pH} / \mathrm{pOH}$), find \mathbf{K}_{a} or $\mathbf{K}_{\mathbf{b}}$
Example 23: At a certain temp, a $\mathbf{0 . 2 0} \mathbf{M}$ solution of $\mathrm{K}_{2} \mathrm{SO}_{3}$ has a pH of $\mathbf{1 0 . 2 5}$. Calculate the Kb of $\mathrm{SO}_{3}{ }^{2-}$ at this temp.

Step 1: Write out dissociation equation of salt. Identify the weak base.	
Step 2: Calculate $[\mathrm{OH}-]$ from pH (pH $\rightarrow \mathrm{pOH} \rightarrow[\mathrm{OH}]$)	
Step 3: Write hydrolysis equation and an ICE table. (It is called hydrolysis this time because SO_{3}^{2} - is an ion.)	
Step 4: Write the Kb expression and substitute the values from the [E]'s in our ICE table	
Step 5: Solve for Kb to correct SD's	

Q TYPE 3: Given $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$(or pH) and K_{a}, find [WA]

Example 24: Find the concentration of HCOOH needed to form a solution with $\mathbf{p H}=\mathbf{2 . 6 9}$.

Step 1: Convert pH to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $*$ This is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at equilibrium.*	
Step 2: Write out ionization equilibrium with an ICE table.	
*Calc change in	
concentrations using molar	
ratios.*	

| expression \& substitute
 values. Find Ka for
 HCOOH on the acid table. |
| :--- | :--- |

In written response questions, you will have to show your exact calculations! You may state assumption if you can prove that the baselacid is less than 5\% ionized.

SHORTCUT FOR MULTIPLE CHOICE ONLY:

Example 22: The pH of 2.0 M acetic acid is...

Step 1: Use MC shortcut option to calc $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ (see Ex. 16 in ABp t 2$)$	
Step 2: Look up Ka value in table. Solve for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	
Step 3: Calculate pH. Select best answer	

Do Hebden set 29: Ka calcs -p. 152 \#77-80, 83
Kb calcs - p. 153 \#85-87, 91

