Name: _____

Block: _____

IV. Acids & Bases (part 3)

IV.14-15 Calculations involving K_a and K_b (Used for the WEAK A & B)

You will be able to:

- Given the Ka, Kb, and initial concentration, calculate any of the following: [H₃O⁺], [OH-], pH, pOH
- Calculate the value of Ka or Kb given the pH and initial concentration
- Calculate the initial concentration of an acid or base, given the appropriate Ka, Kb, pH, or pOH values

Remember: WEAK acids/bases <u>do not</u> ionize completely.

• The _______ is produced.

Therefore, a lower _____ means a ______ acid.

There are 3 TYPES of calculations involving Ka and Kb for weak acids and bases. The following examples are interchangeable for **ACIDS** and **BASES**.

Calculations involving weak bases are similar to calculations involving weak acids, with 2 changes:

- ___
- _____

<u>Q TYPE 1:</u> Given [WA] and K_a , find [H₃O⁺] (or pH)

Example 22: What is the pH of a 0.500 M solution of benzoic acid (C₆H₅COOH)?

Step 1: Look up the Ka on the B-L table	
Step 2: Write out ionization equilibrium with an ICE table.	
Step 3: Write Ka expression & substitute values.	
Step 4: State assumption.	
Assumption can ONLY be made if percent dissociation is less than 5%. Show calc for percent dissociation.	
Step 5: Assumption	

<u>Q TYPE 2:</u> Given [WA]/[WB] and $[H_3O^+]/[OH_-]$ (or pH/pOH), find K_a or K_b

Example 23: At a certain temp, a 0.20 M solution of K_2SO_3 has a pH of 10.25. Calculate the Kb of $SO_3^{2^2}$ at this temp.

Step 1: Write out dissociation equation of salt. Identify the weak base.	
Step 2: Calculate [OH-] from pH	
$(\text{pH} \rightarrow \text{pOH} \rightarrow [\text{OH}^-])$	
Step 3: Write <u>hydrolysis</u> equation and an ICE table. (It is called <i>hydrolysis</i> this time because $SO_3^{2^2}$ is an <u>ion</u> .)	
Step 4: Write the Kb expression and substitute the values from the [E]'s in our ICE table	
Step 5: Solve for Kb to correct SD's	

<u>Q TYPE 3:</u> Given $[H_3O^+]$ (or pH) and K_a , find [WA]

Example 24: Find the concentration of HCOOH needed to form a solution with pH = 2.69.

Step 1: Convert pH to $[H_3O^+]$ *This is the $[H_3O^+]$ at equilibrium.*	
Step 2: Write out ionization equilibrium with an ICE table.	
Calc change in concentrations using molar ratios.	
Step 3: Write Ka	

expression & substitute values. Find Ka for HCOOH on the acid table.	
Step 4: Solve for [WA] with correct SD's	

In written response questions, you will have to show your exact calculations! You may state assumption if you can <u>prove</u> that the base/acid is less than 5% ionized.

SHORTCUT FOR MULTIPLE CHOICE ONLY:

Example 22: The pH of 2.0 M acetic acid is...

Step 1: Use MC shortcut option to calc $[H_3O^+]$ (see Ex. 16 in ABpt2)	
Step 2: Look up Ka value in table. Solve for $[H_3O^+]$	
Step 3: Calculate pH. Select best answer	

Do Hebden set 29: Ka calcs -p. 152 #77-80, 83 Kb calcs – p. 153 #85-87, 91