III.1 SOLUBILITY CONCEPT REVIEW

Read Hebden p. 73 – 76 and review basic solubility definitions.

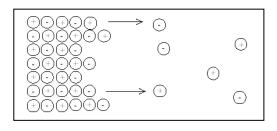
Soluble means _____

Insoluble means _____

The Dissolving Process

IONIC Solutions	MOLECULAR Solutions (Covalent compounds)
made up of	made up of
They are electrolytes.	They are non-electrolytes
e.g.	e.g.
Ionic compounds DISSOCIATE when placed in	Molecular compounds do not dissociate:
water:	I _{2(s)}
NaCl _(s)	$C_{12}H_{22}O_{11(s)}$
KMnO _{4(s)}	
CH ₃ COOH _(l)	
organic acids (-COOH) are molecular, but are	
PARTIALLY IONIC when dissolved in water.	
Image: Constraint of the second se	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Example 1. For each solution, write I for ionic or partially ionic and M for molecular.


a) NiCl ₂	b) CH ₃ OH	c) CH ₃ CH ₂ COOH	d) $Fe(NO_3)_3$
e) K ₂ Cr ₂ O ₇	f) C ₆ H ₁₂ O ₆	g) PCl ₃	h) CsBr

Chemistry 12: Solubility Equilibria

Date:

Solubility Equilibrium

$\begin{array}{ccc} \oplus \odot \oplus $
$\begin{array}{c} \bigcirc \bigcirc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1. When an ionic solid is first put into water, the rate of dissolving is (high/low) and the

2. As dissolving continues, the rate of precipitation (increases/decreases).

3. At some time, rate of dissolving = rate of precipitation = **SOLUBILITY EQUILIBRIA.**

A SATURATED SOLUTION is _____

rate of precipitation is (high/low).

The **SOLUBILITY** of a substance is _____

MOLAR SOLUBILITY is the molarity of a saturated solution

III.2 SOLUBILITY CALCULATIONS

Molar Solubility

Example 2. 0.49 g of AgBrO₃ is required to saturate 250 mL of water. What is the molar solubility of AgBrO₃?

Step 1: convert mass to moles

Step 2: substitute values into C = n/V

Dilution Calculations

Use the formula:

 $\mathbf{C}_1\mathbf{V}_1 = \mathbf{C}_2\mathbf{V}_2$

(initial conc.)(initial volume) = (final conc.)(final volume)

Example 3. Suppose you have 300.0 mL of 1.2 M HCl. How much water do you need to add to dilute it to 0.50 M HCl?

Step 1: Write dilution formula

Step 2: Substitute values into formula and solve for missing variable

Calculating Concentration of Individual Ions

Consider: $MgBr_{2(s)} \xrightarrow{\leftarrow} Mg^{2+}_{(aq)} + 2Br_{(aq)}$

1 M

Example 4. 8.5 g of $MgCl_2$ is dissolved in 2.0L. What is $[Mg^{2+}]$ and $[Cl^{-}]$?

Step 1: Convert [MgCl₂] in mol/L Step 2: Write dissociation equation

Step 3: Use mole ratio to calculate individual conc.

Example 5. 500 mL of 0.8 M Li₂CO₃ is mixed with 500 mL of 0.5 M BeF₂. Find the concentration of all

ions.

Step 1: Calculate new conc. of substances after mixing $(C_1V_1 = C_2V_2)$

Step 2: Write dissociation equations

Step 3: Use mole ratio to calculate individual conc.

Do Hebden Set 14 #1, 2, 6, 9, 10, 16, 17, 18 (a, b, c) (p.74–81)

III.3 SOLUBILITY OF IONIC COMPOUNDS

PREDICTING SOLUBILITY

Use the "Solubility of Common Compounds in Water" Table in your DATA BOOKLET p. 4.

SOLUBILITY OF COMMON COMPOUNDS IN WATER

The term soluble here means > 0.1 mol/L at 25°C.

Negative Ions (Anions)	Positive Ions (Cations)	Solubility of Compounds
Chloride,Cl ⁻	All others	Soluble
Bromide, Br ⁻ or Iodide, I ⁻	$\int Ag^+, Pb^{2+}, Cu^+$	Low Solubility

Date:

Example 6. Is FeCl_{3(s)}, MgSO_{4(s)}, Na₂S_(s) soluble in water?

Step 1: Look in the Negative ion column for negative ion and see if positive ion is soluble

PREDICTING A PRECIPITATE

A **PRECIPITATE** is a <u>solid</u> formed when two liquids or aqueous solutions react.

Example 7. Will a precipitate form from mixing solutions of BaS_(aq) and AgNO_{3(aq)}?

Step 1: Do double replacement, don't worry about balancing equation

Step 2: Check their solubility. Low solubility = solid, soluble = aqueos

III.4 WRITING EQUATIONS

Example 8. Write the formula, complete ionic, and net ionic equations when solutions of calcium chloride and sodium sulfate are mixed.

Molecular/Formula Equation

= balanced chemical equation

Step 1: Double replace reactants.

Step 2: Check solubility of products. Must indicate (s), (l), (g) states.

Complete Ionic Equation

shows all soluble ionic compounds broken into ions.

Step 1: From formula equation, break soluble species (aq) into ions. Leave solids alone.

Net Ionic Equation

shows ONLY the ions actively involved in forming the precipitate.

Step 1: From complete ionic equation, OMIT spectator ions.

OR Write equation as follows

Ions forming ppt \leftrightarrows formula of ppt

III.5 USING SOLUBILITY AND PRECIPITATION TO IDENTIFY OR

SEPARATE IONS

QUALITATIVE ANALYSIS means using experimental procedures to _____

Process

Example 9. You suspect a solution contains Ba²⁺ or Cu⁺. Explain the process for identifying the unknown ion.

Step 1: Look on Solubility Table for anions (first column) that can precipitate with cations.

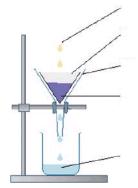
Step 2: Choose an anion that will only form a precipitate with ONE of the cations.

Step 3: Conclude which cation is present.

Ba ²⁺		
Cu ⁺		

Experimental Procedure

Example 10. Suggest and experimental procedure to identify the unknown ions for the previous example.


In reality, you can't just add ions to a solution because they don't exist by themselves in

a solution. All solutions are neutral, positive ions must be with a negative ion.

When adding ions, always choose _____

For **POSITIVE IONS**, combine with:

For **NEGATIVE IONS** combine with:

Procedure:

- 1. Add some 1 M _____ solution until no more precipitate forms.
- 2. Filter the solution. The precipitate _____ will remain in the filter paper.
- 3. To the filtrate, add
- 4.

Example 11. You have 3 unlabelled test tubes containing I⁻, Cu²⁺, and Ca²⁺. What procedures could you used to test these and find out which is which?

Step 1: Look on Solubility Table			
for anions (first column) that can precipitate with cations.	I ⁻ Cu ²⁺		
Step 2: Choose an anion that will only form a precipitate with ONE	Ca ²⁺		
of the cations.			
Step 3: Conclude which cation is			

Step 3: Conclude which cation is present.

Step 4: Write procedure, remember to add soluble compounds not ions alone

Read through examples on p. 88 – 89. Do Hebden Set 16 #26 – 29, 31, 33, 35, 37 (p.90-91)

III.6 THE SOLUBILITY PRODUCT

SOLUBILITY PRODUCT =

Equilibrium expression = SOLUBILITY PRODUCT EXPRESSION.

Keq = Ksp

Example 12. Write the SOLUBILITY PRODUCT EXPRESSION for a saturated solution of MgF₂

Step 1: Write net ionic equation.

Step 2: Write the K_{eq} expression as before. Omit solids and remember to change coefficients to exponents.

Meaning of K_{sp}

Low K_{sp} value

K_{sp} is CONSTANT; See The DATA BOOKLET p.5.

=

K_{SP} CALCULATIONS

Type 1: Find Ksp from solubility

Example 13. What is the K_{sp} for Ag_2CrO_4 if the solubility is 1.31×10^{-4} M?

Step 1: Write net ionic equation.
Step 2: Use mole ratios to find ion conc.
Step 3: Write K_{sp} expression
Step 4: Substitute conc. into K_{sp} expression. Solve.
Check s.f., omit units.

Example 14. If 1.64×10^{-6} g of Zn(OH)₂ can dissolve in 1.0 mL of water, what is the K_{sp}?

Step 1: Convert solubilityfrom g/L to mol/L. (usemolar mass)Step 2: Write net ionicequation.Step 3: Use mole ratios tofind ion conc.Step 4: Write K_{sp}expression. omit (s)Step 5: Substitute conc.into K_{sp} expression. Solve.Check s.f., omit units.

Type 2: Find solubility from K_{sp}

Example 15. What is the $[Ca^{2+}]$ and $[CO_3^{2-}]$ if the K_{sp} for CaCO₃ is 4.8 × 10⁻⁹?

Step 1: Look up Ksp. Write net ionic equation

Step 2: Let unknown concentration of salt = "s". Use mole ratios to represent other concentrations.

```
Step 3: Write K<sub>sp</sub>
```

Chemistry 12: Solubility Equilibria

Date:

expression.

Step 4: Substitute "s" into K_{sp} expression and solve.

Example 16. The K_{sp} for MgF₂ is 6.4 × 10⁻⁹ M. What is the [Mg²⁺] and [F⁻]?

Step 1: Look up Ksp. Write net ionic equation Step 2: Let unknown concentration of salt = "s". Use mole ratios to represent other concentrations. Step 3: Write K_{sp} expression Step 4: Substitute "s" into

 K_{sp} expression and solve.

Read through III.6 in Hebden and Do Hebden Set 17 #40, 41, 42, 45, 47, 48, 52, 55 (p.91-95)

III.7 K_{sp} and **Precipitate Formation**

So far, we are able to use the Solubility Table to predict whether a precipitate will form, BUT the Solubility Table is only good when solubility is > 0.1 mol/L.

If we mix ions in LOW ENOUGH CONCENTRATION, a precipitate will not form.

For example, the K_{sp} of $CaCO_3 = [Ca^{2+}][CO_3^{2--}] = 5.0 \times 10^{-9} =$ saturated solution on the verge of precipitating. This is the SATURATION POINT.

The Trial Ion Product/Trial K_{sp}/ Q

TRIAL ION PRODUCT (TIP), Trial K, Q = [products]

[reactants]

TIP < Ksp PPT will NOT form TIP > Ksp PPT will form

Predicting Precipitate Calculations

Type 3: Will ions precipitate when mixed together

- 1. Write net ionic equation
- 2. Write K_{sp} expression and Look up K_{sp} value (in Data Booklet p. 5)
- 3. Find Ion Concentration and plug them in to calculate TIP
- 4. Compare TIP with K_{sp}

Example 17. Will a precipitate form when 4.5 mL of 5.0×10^{-4} M Cu⁺ is mixed with 2.0 mL of 6.0×10^{-5} M

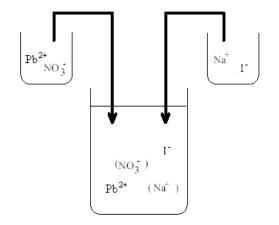
Step 1: Write net ionic equation.
Step 2: Write K_{sp} expression and look up K_{sp} value.
Step 2: Write K_{sp} expression and look up K_{sp} value. Step 3: Find ion concentrations. Use C_1V_1 = C_2V_2 or dilution factor.
Step 4: Write expression for TIP and calculate TIP (using initial concentrations)
Step 5: Compare TIP with K_{sp} .

Type 4: Finding MAX. possible conc. = MIN. conc. needed to ppt.

- 1. Write net ionic equation
- 2. Write K_{sp} expression and Look up K_{sp} value (in Data Booklet p. 5)
- 3. Substitute given values into TIP and Solve for unknown

How much of one ion can be present in solution if there is a certain amount of another ion?

Consider a SATURATED solution of PbI₂. K_{sp} for PbI₂ is $8.5 \times 10^{-9} = [Pb^{2+}][\Gamma]^2$


For every Pb^{2+} or I⁻ that dissolves, PbI_2 forms back

$$PbI_2 \leftrightarrows Pb^{2+} + 2I$$

• only a limited number of Pb^{2+} and I^{-} can exist dissolved in solution

- this limit is determined by $K_{sp} = [Pb^{2+}][I^-]^2 = 8.5 \times 10^{-9}$.
- So [Pb²⁺]x[I⁻]² CANNOT EXCEED 8.5x10⁻⁹

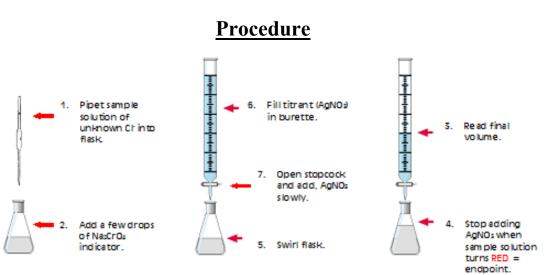
The Pb^{2+} and I⁻⁻ ions can come from different sources.

When the ions come from different sources: eg. Pb^{2+} from 0.1M PbNO₃ and I⁻ from 0.01M NaI [Pb²⁺] does not have to equal [I⁻] BUT when $[Pb^{2+}]X[I^{-}]^{2}$ exceeds Ksp (8.5x10⁻⁹) then PPT will form.

Example 18. If we have a 3.0×10^{-4} M solution of Pb²⁺, what [I⁻] is required to just start the precipitation of PbI₂ from the solution?

Step 1: Write net ionic equation.		
Step 2: Write K _{sp} expression and look up K _{sp} value.		
Step 3: Substitute values into TIP and Solve for unknown concentration.		
Looking at the results:		
If [I ⁻] is less than	, the solution will be	
If [I ⁻] is just equal to	, the solution will be	
If more I ⁻ is added, it wil	l	

Do Hebden Set 18 #56, 59, 64, 68 [Type 1], 58, 62, 66, 67 [Type 2] (p.98-99)

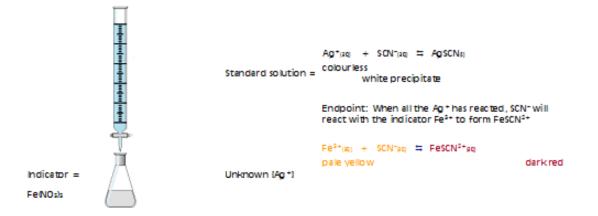

III.8 APPLICATIONS OF SOLUBILITY - TITRATION

Date:

INDICATOR is a substance that will change colour to show that the titration is complete.

Principle of Method

 This buret contains the titrant. 1. Titration of unknown Cl⁻ ions with AgNO₃ 	2. Ag ⁺ added will react with Cl ⁻ and form a
	precipitate $AgCl_{(s)}$. $Ag^+ + Cl^- \leftrightarrows AgCl_{(s)}$
3. Stoichiometric/equivalence Point	4. AgCl _(s) will stop forming
 CrO₄²⁻ is the indicator. Note: AgCl is less soluble than Ag₂CrO₄, so it will ppt before AgCrO₄ 	 When all the Cl⁻ ions have reacted, the next drop of Ag⁺ will react with CrO₄²⁻ and turn red.


Date:

Example 19. A 50.0 mL solution with an unknown [Cl⁻] was titrated with 0.250 M AgNO₃. A precipitate started to form after 32.8 mL of AgNO₃ was added.

- a) What is a precipitate that definitely forms at the equivalence point? ______
- b) What is the $[C\Gamma]$ in the 50.0 mL solution?

```
Step 1: Calculate moles of standard
solution used to reach equivalence
point. (mol = CV)
Step 2: Write net ionic equation for
precipitate.
Step 3: Find moles of Cl<sup>-</sup>. At
equivalence point: moles Ag<sup>+</sup> =
moles Cl<sup>-</sup>
Step 3: Calculate [Cl<sup>-</sup>]. C = mol/V
```

Example 20. Titration of Ag Ion Concentration.

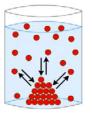
A solution containing silver ions (Ag^+) is titrated with 0.200 M KSCN solution to find the $[Ag^+]$ in the sample. The indicator $Fe(NO_3)_{3(aq)}$ is used to signal when the stoichiometric point is reached. It is found that 15.6 mL of 0.200 M KSCN is needed to titrate a 25.0 mL sample of Ag^+ solution. Determine the $[Ag^+]$ in the sample. (answer: $[Ag^+] = 0.125$ M)

Step 1: Calculate moles of standard solution used to reach equivalence point. (mol = CV)

Step 2: Write net ionic equation for precipitate.

Step 3: Find moles of the unknown using the mole ratio from the net ionic equation.

Step 3: Calculate $[Ag^+]$. C = mol/V


Read III.8 in Hebden and Do Set 19 #70-72 [Cl⁻ Titrations], 76-80 [Hardness of water] (p.98-99)

III.10 COMMON ION EFFECT – SOLUBILITY AND LE CHATELIER

The solubility of a salt can be changed by applying Le Chatelier's Principle. Consider a saturated solution of

 $CaCO_3$: $CaCO_{3(s)} \leftrightarrows Ca^{2+} + CO_3^{2-}$

Let's disturb the equilibrium by adding CaCl₂.

 $CaCl_2$ dissolves to form _____+ ___ions.

 (Ca^{2+}/Cl^{-}) is a spectator ion, but (Ca^{2+}/Cl^{-}) will affect the equilibrium.

So adding (Ca²⁺/ Cl⁻) causes the equilibrium to shift (right/left), forming (more/less) of CaCO_{3(s)}.

COMMON ION EFFECT:

Example 21. Predict which compounds would decrease the solubility of CaCO_{3(s).}

$$CaCO_{3(s)} \leftrightarrows Ca^{2+} + CO_3^2$$

Stress	Ions	Effect on solubility of CaCO ₃ (increase/decrease/no effect)	Reason for effect
$Ca(NO_3)_2$			

KNO ₃		
K ₂ CO ₃		
CaCO ₃		

We can also use Le Chatelier's Principle to INCREASE SOLUBILITY. Consider a saturated solution of AgCl.

 $AgCl_{(s)} \leftrightarrows Ag^{+} + Cl^{-}$

To increase solubility (make it dissolve more), we need the equilibrium to shift (left/right).	The reaction will
shift this way if we can decrease the concentration of $[Ag^+]$ or $[Cl^-]$.	

Look at the Solubility Table and find ions the will react with Ag⁺

Cl

Remember you have to add ions as a SOLUBLE compound. Add positive ions with

Add negative ions with _____

Example 22. How can we increase the solubility CuI_(s)? Suggest 2 different compounds that can be added. Show equilibrium equations to show how it works.

Step 1: Write net ionic equation

Step 2: Remove common ion by adding an ion that will ppt out the common ion. Check Solubility Table.

Step 4: Add ion as soluble salt. Combine cation with NO_3^- and anion with Na^+ .

Adding an ACID to an anion that is a base will INCREASE SOLUBILITY of the compound.

For example:

$$CaCO_{3(s)} \leftrightarrows Ca^{2+} + CO_3^{2-}$$

+H⁺ (from an acid like HCl)
$$\downarrow$$

HCO₃-(aq) carbonic acid
$$\downarrow$$
 decomposes
H₂O_(l) + CO_{2(g)}

Read Examples in III.10 (p. 106 – 107) and Do Set 20 #81-86 (p.108)